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Abstract 
Specification of architectures is an important 

prerequisite for evaluation of architectures. With 
the increase m the growth of health usage and 
monitoring systems (HUMS) m commercial and 
military domains, the need far the design and 
evaluation of HUMS architectures has also been on 
the increase. In this paper, we describe HADL, 
HUMS Architectural Description Language, that we 
have designed for this purpose. In particular, we 
describe the features of the language, illustrate them 
with examples, and show how we use it in 
designing domain-specific HUMS architectures. A 
companion paper [15] contains details on our 
design methodology of HUMS architectures. 

Introduction 
Architecture of a system specfies its 

components as well as the intemctions among the 
components. In particular, it deals with stnrctural 
issues such as the organization, comjxmedfimction 
distribution, and communications. Often, 
architectural specifications include protocol 
specifications describing the system behavior and 
the details of component interactions. 

Prior to implementing an architecture 
(software or hardware), it is important that we study 
its characteristics either through analysis and/or 
simulation. In part~cular, with the quick turn-around 
time expected in most of today's commercial 
applications, the archikcbd simulation is even 
more important [7]. 

The first step in the analysis or simulation of 
an architecture is architectural specification. In fact, 
when developing domain-specific architectures, it is 
desirable to store the available architectures (i.e., 
their specifications) in a design library. Thus, 
whenever an architecture needs to be developed for 
a new application, the available architectures could 

be analyzed for its suitability, and the new 
architecture arrived at [q. Several architectmal 
description languages (ADL) have been described 
in literature to meet the specification needs of 
applications in different environmenb. 

In recent studies, monitoring the health of 
certain aerospace structures has been shown to be a 
key step in reducing the lifecycle costs for structural 
maintenance and inspection [13,14]. Since the 
health of the structures ultimately determines the 
health of a vehicle, health monitoring is also an 
important prerequisite for improved aviation safety. 
The need for developing architectures for integrated 
structural health monitoring has been discussed m 
r131- 

For the last few years, we have been 
investigating some of the key characteristics of 
architectures for health and usage monitoring 
(HUMS) of aerospace structures. As part of this 
research, we have been looking into domain- 
specific architectures. For example, the HUMS 
architectures for battleships are different fiom those 
of HUMS for aircrafts. Similarly, HUMS for 
aircrafts are different fiom HUMS for helicopters. 
In order to maximiz the benefits of architectural 
reuse, we have arrived at a design-expert system 
that uses a database of existing architectures to 
arrive at new architectures [15]. One of the major 
challenges in this effort is the efficient storing, 
retrieval, and evaluation of architectures in the 
database. 

Keeping this in mind, we have defined a new 
architectural language called HADL or HUMS 
Architectural Definition Language. It is a 
customized version of xArch/ f lL  [4]. It is based 
on XML and, hence, is easily portable fiom domain 
to domain, application to application, and machine 
to machine. In addition, specifications written in 
HADL can be easily read and parsed using the 
currently available XML parsers. Thus, there is no 
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need to develop a plethm of software to support 
HADL. 

In this paper, we descrii HADL and illustrate 
its use in specifjrlng architectures for the HUMS 
domain. The paper is orgamzed as follows. In 
section 2, we summarize existing work in the area 
of architectural description languages. In section 3, 
we provide a brief summary of HUMS architectures 
including reference architedmt. Section 4 
summarizes the fa- of HADL. section 5 briefly 
summarizes the use of HADL based specifications 
in our design effort. Finally, section 5 describes 
fbture work 

Related Work 
As discussed in the intr-on, specification 

of an architecture is an important prerequisite for 
architectural design and evaluation. For this reason, 
several architectmal description languages (ADLs) 
exist in current literature. Wright [2], Rapide [SI, 
Aesop [12], xArcWxADL [4], and VHDL [5,11] are 
a few example ADLs. All these languages have 
their own syntax and their own compilers. Although 
all of these languages are concerned with 
architectural design, each provides certain 
distinctive capabilities. For example, Aesop 
supports the use of architectural styles [12]; 
ADAGE (Avionics Domain Application Generation 
Environment) supports the description of 
architectural hmeworks for avionics navigation 
and guidance [ 11; MetaH provides specific guidance 
for designers of real-time avionics control software 
[17]; C2 supports the description of user interface 
systems using a message-based style [lo]; Rapide 
allows architectural designs to be simulated, and 
has tools for analyzing the results of those 
simulations [SI. Some of these ADLs are d e s c r i i  
below. 

VHDL (Very High Speed Integrated Circuit 
(VHSIC) Hardware Description Language) is a 
high-level VLSI design language with which we 
could draw designs of digital hardware that will 
enable us to specifjl designs and simulate these 
designs to produce mostly complete systems [3,5]. 
These systems incorporate sUacient details and 
help testing hardware systems for correctness. One 
of the main uses of VHDL is to describe the 
structure of a system. It has been highly successful 

in its domain due to its reusability and robustness. 
Its main disadvantage is that it is too restrictive and 
cannot be extended to other domains for similar 
Purpose- 

Acme is another architectund description 
language developed at the Carnegie-Mellon 
University [6]. Its main goal was to provide a 
common language that could be used to support the 
interchange of a r c h i n 1  descriptions betweem 
varieties of archiktural design tools [q. One of the 
main advantages of Acme is that it is simple to use. 
It also provides the user with a representation for 
describing, storing and manipulating the designs 
produced. It also describes the architectures very 
efficiently and elegantly by having its own set of 
language constructs for describing architectmil 
structure, types and styles. Its main disadvantage is 
that it is not applicable to all applications. 

Darwin is a language for describing 
hierarchical architectures for systems [9]. Its 
strengths include the ability to model hiea-iucbically 
constructed systems and systems that are distriiuted 
across many machines. Darwin also has limited 
support for dynamism through the delinition of 
structures that can be dynamically instantiated. It 
has both a component based description and a 
graphical representation. 

XArch/sADL is a standard, extensible XML- 
based representation for software architectures [4]. 
It is probably the first ADL that mtroduced the 
notion of using XML to speclfl architectures. 
According to [4], xArch specifically provides the 
following features: (i) xArch is a standard, 
extensible =-based representation for software 
architectures; (ii) It provides a common core XML 
notation for architectures that can serve: as a simple 
stand-alone representation for architectures. 
Specifically, xArch provides a common set of bare- 
bone features that can be used to model an 
architecture. In addition, it can be used as a starting 
point for other, more advanced =-based 
architectural notations. HADL draws its inspiration 
fiom xArch. 

HUMS Architectures 
Typical HUMS architectures consist of sensors 

at the lowest level. The sensors generate data 
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(analog or digital) representing the health of the 
components that they are monitoring. The sensors 
are cormected to transducers that convert the sensor 
data to digital form. The digi t id  data is now 
storedprocessed by several high-level processors. 
A reference architecture for HUMS is shown in 
Figure 1 [13,14]. It is divided into three levels. The 
lower layer deals with the sensors; the middle layer 
handles the data starage and refried, and the upper 
layer deals with data processing (applications) and 
interaction with the users. 

I User InterEdce 1 
t 

Processing and Control 
High-level I t 
HuMSkereelserviCes 

T Low-level Interface 

Low-level Sensor 
Processing and Control 

Figure 1. HUMS Reference Architecture 

While figure 1 descrii the required services 
in a hierarchical fashion, it does not provide 
sufficient details for us to build a HUMS system. 
For this purpose, we need an architectural 
description with details of the system components 
and the links that interconnect them. In other words, 
we need a more detailed description with 
implementation details for each layer along with 
inter- and intra-level connections of the 
components. Typically, the links are either point-to- 
point connections or broadcast media such as buses 
or rings. In this paper, we d e m i  the use of 

HADL for the purpose of spec@ing such low-level 
architectural details. 

Description of HADL 
The core elements of HADL are component 

instances, connector instances, and i n e e  
instances. In addition, we define links and network 
types, which are of connector type, to simplify the 
specification of HUMS architectures. They are also 
the basic elements of xArch [4]. All these elements 
are necessary and sufficient to design HUMS 
architectures. 

As in xArch, XML and XSD are used to 
describe an architecture in HADL. While the actual 
representation of the architecture is done in XML, 
XSD expresses the restrictions placed on the 
architecture. According to W3C consortium, “XSD 
(XML Schema Definition) specifies how to 
formally describe the elements in an J3xtaiile 
Markup Language (XMLJ document. This 
description can be used to venfL that each item of 
content in a document adheres to the description of 
the element in which the content is to be placed. 
[18]” In other words, it acts as a compiler for the 
XML representation. In the XSD schema-file, all 
the possible data types that are necessary are 
considered. Through this schema, the manner in 
which these data types are to be defined is stated. 

Components 
These are the building blocks for any 

architecture. Every part of the architecture can be 
represented using this data type. This element type 
represents the sensors, transducers, and other 
computational units. This can contain one or more 
elements of type componmtInstance. 
ComponentInstance has a provision for every 
component to have an ID attribute by which the 
component can be identified. It also has a name 
element through which it is possible to assign a 
specific name to the component. Every component 
has an interface ID that facilitates connections to 
other components in the architecture. Components 
can be simple or complex. A simple component 
(type: simple) in HUMS can be one of the 
hdamental units like sensors, transducers, nodes, 
etc. A complex component (type: arch) can be a 
sub-architecture that is a combination of simple 
components with connectors, intehces, and 
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associated links. consider the following example 
component. 
ComponenenttP 

<componentlnstance id=" 1"> 
<description> 

name="StXlSOrl" 
properties{requestRate:float=l7.0; 

sourceeode=Lib/SSe.c } 
C/desCription> 

</componentbitan- 
</Components> 

Here, a sensor component is being defined by its id 
(l), name (sensorl), and its Propemes. The 
properties include the maximum rate of requests 
that the sensor can respond to and the location of 
code that describes its functionality. The source 
code is often helpful in detailed simulation or 
analysis of an architecture. 

Connectors 
Connection instance provides users the 

capability to establish an interconnection between 
different components. This element type represents 
coordination of activities or interactions between 
components. This enables the user to define the 
type of network (protocol and topology) to be used 
like the Ring, Star, Bus or RPC (Remote Procedure 
Call). Through the network element, it is possible to 
define all the components that are being connected 
and the order in which they are being connected. 
For example, consider the example m figure 2. This 
describes a connector instance with id=l. It is 
configured as a "Star" configuration (A few basic 
configuration types are defined a priori). In 
addition, it specifies the components involved. In 
this example, three components were involved. 
Each component is also specified. For each 
connector, and interface is also specified. In 
summary, a COM~X~CX instance consists of network 
type, components, and an interface definition. 

Interfaces 
In any architecture, a component is connected 

to one or more components. Interhces specify the 
behavior of a component (or a connector) with 
respect to the external entities. It indicates the 
correlation between the component and the external 
environment. In Figure 2, the interface is simply 
specified as "star." In this case, it is assumed that 

the interface description of a star is known a priori 
and hence it is not explicitly specified. 

Links 
Links are used for inmnnection between 

various componen~. Right now in the case of 
HUMS, three types of links are considered: RPC 
lmk, bus link, and cluster link. RPC link is a one-to- 
one link having one component connected to 
another component. The bus link makes it possible 
to have one-to-many connections. Cluster link 
represents a cluster of components such as nodes. 
Consider the example in Figure 2. The connector 
has three components connected using three linlrs. 
The link specifies the type of components being 
connected. In this case, all three components are of 
type "arch" reflecting the fact that they are sub- 
architectures (and not simple components). The id 
of each component that a link connects is also 
specified (e.g., sl ,  s2, s3). 

Network type 
In HUMS architectures, it is common that the 

star, ring, or bus topologies. These are universal 
standards for network connections. Hence, we have 
introduced the network type to spec* the topology 
of a connection. This provision helps us reduce the 
duplication due to repeated specification of these 
topologies repeatedly in an architectmil 
specification. Instead, just the type of network 
needs to be defined. (In case a new topology is 
introduced, it could be defined once using other 
HADL constructs and repeatedly used later.) 

various monitoring systems will be COLMecfed m 

Apart from the above, there are other types such 
as type of data medium, mobility (mobile or 
stationary), sensor type, etc. by which the 
components in an HUMS architecture may be 
specified. 

Example Architecture 
In this section, we first illustrate how 

different attributes of HUMS components may be 
specified using HADL. We then use an example 
system to further illustrate HADL features. 

Consider the sensor attributes in Figure 3. Using a 
set of predefined tags (e.g., medium, protocol, 
mobility, weight, peak data rate, etc.), the attributes 
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~/Connectorlnstance> 
<Connectorlnstance id="l+ 

<Network> 
<Type>STAR<tType> 
<Components-l nvolved > 

canchorlnterface xlink:type="arch" xlink:href="#sl " /> 
eanchorlnterface xlink:type="arch" xlink:href="#s2" /> 
<anchorlnterFace xldinkAype="arch" xlink:href="#s3" I> 

</Cornponents-lnvdved> 

dsajptbn>name="staF<ldescription> 

</Network> 
<Interfacelnstance id=Y"> 

</lnteifacelnstance> 
4Connectorlnstance 

Figure 2. llhtmbo n of a Connector, link and interface constructs 

<HUMS:Transducer> 
~HuMs:Identity> </HuMS:Identity> 

<HUMS:FunctiW -4HUMS:FunCtion> 
<HUMS:Typex/HvMs:Type> 
<HUMS:Aumacy-A-y> 
~HuMs:Pow-Power> 
-4IUMS:Weight></HUMS:WeighD 
~ H U M S : A v g D a t a R a ~ S A v g D a t a R a W  
<"MS:Pea lcDataRa~:PeakDataRaW 
< H u M s : B u f f e r S p a c e S B & d p a c e >  

<HUMS:ReceivingPowerXlHUhB:ReceivingPower> 
owaWHUMS:TransmittingPower> . .  <HUMS:T- 

-4HUMS:TransdUcer> 
Figure 4. Transducer attributes in HUMS 
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of available sensors can be completely specified 
and stored in the design library. Similarly, the 
attriiutes of transducers can be specified (as in 
Figure 4) and stored m the component database or 
design library. In addition, a user may specify 
design constraints as input to designing an 
architecture. For example, Figure 5 specdies the 
constraints on networks that may be used in an 
architecture. Such consmints may also be specified 
for other components m links. €n this manner, the 
user input i n f a -  component specifications, 
as well as other subsystem and systemarchitectures 
maybe specified and storedin the designlibmy. 

Now, let us look at a simple HUMS architecture 
shown in Figure 6. It has three temperature sensors 
(Sl-S3) connected through a ring and three fiber- 
optic sensors (S4-S6)  connected through a bus. The 
ring and the bus are connected to another bus. Thus, 
the data fiom all the six sensors is put out on a bus. 
(For simplicity, we have not included any 
transducers). A processor, also connected to the 
bus, processes the data. A user's terminal accesses 
the processed data. It is also connected to the bus 
through which it accesses the processor data. The 
HADL specification for this example architecture is 
shown in Figure 7. The specification describes the 
components, the processor, the ring, and the two 
busses. It also specifies the order in which the 
components are connected to the networks. The 
specification for the components also includes 
references to the code that describes their behavior. 
This is useful in analysis or simulation of the 
architectures. Similar references could be included 
for any link or co~ector  types. 

Using HADL specification in Domain- 
specific Architectures 

Our primary objective in developing HADL 
was to use it as a tool in designing domain-specific 
architectures. In particular, in our project, we are 
working on methods to develop domain-specific 
architectures for HUMS. Our approach is as 
follows. 

For the particular domain under consideration, 
several architectures may have been developed 
a priori. In fact, for large systems (such as ships 
and aircrafts) we assume that a variety of 
architectures have been developed for several 

sub-system (e.g., engine subassembly, fan and 
cooling subsystem, etc.). Thm architectures 
are specified using HADL and stored in a 
design library. 

The user specifies the system requirements such 
as location of sensors, expected data rates, 
expected performance metrics (e.g., response 
time, availability, etc.), and constraints (e.g., 
weight limitations) using HADL. 

The user also may spec* (if necessary) 
constraints on components that may be used in 
the architecture. For example, clue to electro- 
magnetic interference, the user may only 
suggest the use of fiber4ptic networks with 
certain data rates. Such limitations are also 
expressed in HADL and provided to the 
designer. 

The design explorer reads the user inputs (in 
HADL), parses it, and then using its logic 
searches the design li'brary for subsystem and 
system specifications available. It then uses the 
evaluator module to evaluate the suitability of 
the retrieved architectures in meeting system 
reqllir-ts. 

Since most architectures may only be available 
in skeleton forms, the design explorer needs to 
derive detailed architectures fiom the chosen 
skeletal architectures. Details of this step are 
explained in 1151. 

' 

Future work 
The HADL development is currently in its 

early stages. So far we have used it to express only 
simple HUMS systems. As we experiment with 
more complex architectures, we may identify more 
attributes and features needed in HADL to make the 
architectural specification simple and complete. 
However, h m  our current experience, as well as 
the experience of other ADL developers, we are 
confident that the XML-based approach to 
specification is far more flexible than other 
approaches to specification. We are also developing 
graphic-intdaces through which user can provide 
input which is then converted to HADL finm. 

In summary, the work reported in this 
paper is work-in-progress. Each module of our 
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<constraints> 
<Type>BUS<IType> 
<Category> device net </category> 
<data r a t e  -05 4data raw 
<bittime>2 *ittime> 
~maxlul~1oo</nmxlength> 
<max no of nodes%44max no of nodes> 
<ma~r data s i n 9  47184max data size> 
<minmsg size47 4minmsg size> 

4constraints> 
<constraints> 

<TWBUS<CTW 
<Category> Etbernet<category> 
aatarateP10 4dataraw 
<bit time.01 *it time > 
<max lmgth>25OWmax length> 
<max no of nodes>1ooo<hnax no of nodes> 
<max data size> 15Wmax data s k t 9  
<min msg s W 7 2  </min msg size> 

</conStrainw 
<constrainW 

(Type>BUS(rType> 
<Category> control neWcategory> 
<dataraw5 </dataraw- 
<bit w . 0 2  </bit time > 

<max no of nodesWWmax no of nodes> 
<max data size> 5044max data size> 

~ m a x l e n g t h > 1 o o o < / m a x l ~ ~  

<min msg Size>74min msg size> 
4constraiIlw 

Figure 5. Examples of specifying network constraints in HUMS architectures 

s1 

Figure 6. Example HUMS architecture 
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Figure 7. HADL specification for the Example HUMS architectwe 

<?xml version="l.O" encoding="UTF-8" ?> 
CHumsArch xmlns="http://www.odu.edu/~sgullapa/instance2.xsd" 

xmlns: instance="http://www.odu.edu/~sgullapa/instance2.xsd" 
xmlns:xlink="http://www.w3.0rg/1999/xlinkn 
xmlns:xsi="http://www.w3.org/2O0O/ lO/XMLSchema-instance"> 
<ArchInstance id="O"> 

< ArchType>Simple</ArchType> 
<description>SampleDesign</description > 
< Num~Components>8</Num~Components~ 

<componentI nstance id ="in > 
<Corn ponents> 

<deScription>name='*sensorl" Properties < requestRate : float = 
17.000; sourcecode : string = "CODE- 
UB/tempsensor.c") </description > 

</componentInstance > 
<componentInstance id ="2" > 

<description>name="sensor2" Properties < requestRate : float = 
17.000; sourcecode : string = "CODE- 
UB/tempsensor.c")</description> 

</componentInstance> 
- - <componentInstance id="3"> 

<description>name="sensor3" Properties < requestRate : float = 
17.000; sourcecode : string = "CODE- 
UB/tempsensor.c")</description> 

</componentInstance> 
- - <componentInstance id="4"> 

<description>name="sensor4" Properties < requestRate : float = 
500.000; sourceCode : string = "CODE- 
UB/fibersensor.c")</description > 

</componentInstance > 
- - <componentInstance id = "5"> 

~description~name="sensor5" Properties < requestRate : float = 
500.000; sourceCode : string = "CODE- 
UB/fibersensor.c") </description > 

</componentInstance> 
- - <componentInstance id="6"> 

<description>name="snsor6" Properties < requestRate : float = 
500.000; sourcecode : string = "CODE- 
UB/fibersensor.c")</description > 

</componentInstance> 
- - <componentInstance id ="7" > 

<description>name="collectingNode" Properties { collectRate : 
float = 1000.000; sourcecode : string = "CODE- 
UB/CollectNode.c") </description > 

</componentInstance> 
- - <corn ponentInsta nce id = "8" > 

<description>name="UserInput" Properties {InputRate : float = 
34.000; sourcecode : string = "CODE- 
UB/UserInput.c")</description> 
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</componentI nstance> 
</Components> 

- - <ConnectorInstance id="9"> 
- - <Connections> 

- - <Network> 
<Type>Ring</Type> 

- - <Components-Involved> 
<anchorInterface xlink:type="simple" xlink: href="#l" /> 
<anchorInterface xlink:type="simple" xlink:href="#2" /> 
<anchorInterface xlink: type="simple" xlink: href= "83" /> 

</Components-Involved > 

- - <InterfaceInstance id="lO"> 
</Network> 

<description>name ="Out"</description> 
</InterfaceInstance> 

</ConnectorInstance> 

- - <Network> . 
- <Con nectorInsta nce id ='I 11 " > 

<Type > Bus</Type > 

- 

- - <Components-Involved> 
CanchorInterface xlink:type="simple" xlink: href="#4 /> 
<anchorInterface xlink:type="simple" xlink: href="#S" /> 
CanchorInterface xlink:type="simple" xlink: href="#6" /> 

</Components-Involved > 

- - <InterfaceInstance id="12"> 
</Network> 

<description >name ="Out" </descri ption > 
< /InterfaceInstance > 

</ConnectorInstance> 

- - <Network> 
- - <ConnectorInstance id="13"> 

<Type>Bus</Type> 
- - <Components-Involved> 

CanchorInterface xlink:type="simple" xlink: href="#7" /> 
<anchorinterface xlink:type="simple" xlink: href="#8" /> 
xanchorInterface xlink:type="simple" xlink: href="#lO" /> 
<anchorInterface xlink:type="simple" xlink: href="#lZ" /> 

</Corn ponents-Involved > 
</Network> 

</Con nections> 
c/ConnectorInstance> 

</ArchInstance> 
c/HumsArch > 
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architectural design system is posing a number 
of interesting design and implementation 
issues. We should have the complete system in 
operation within the next one year. 
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